Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMJ Surg Interv Health Technol ; 5(1): e000141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817624

RESUMEN

Objectives: Knee osteoarthritis is a major cause of physical disability and reduced quality of life, with end-stage disease often treated by total knee replacement (TKR). We set out to develop and externally validate a machine learning model capable of predicting the need for a TKR in 2 and 5 years time using routinely collected health data. Design: A prospective study using datasets Osteoarthritis Initiative (OAI) and the Multicentre Osteoarthritis Study (MOST). OAI data were used to train the models while MOST data formed the external test set. The data were preprocessed using feature selection to curate 45 candidate features including demographics, medical history, imaging assessments, history of intervention and outcome. Setting: The study was conducted using two multicentre USA-based datasets of participants with or at high risk of knee OA. Participants: The study excluded participants with at least one existing TKR. OAI dataset included participants aged 45-79 years of which 3234 were used for training and 809 for internal testing, while MOST involved participants aged 50-79 and 2248 were used for external testing. Main outcome measures: The primary outcome of this study was prediction of TKR onset at 2 and 5 years. Performance was evaluated using area under the curve (AUC) and F1-score and key predictors identified. Results: For the best performing model (gradient boosting machine), the AUC at 2 years was 0.913 (95% CI 0.876 to 0.951), and at 5 years 0.873 (95% CI 0.839 to 0.907). Radiographic-derived features, questionnaire-based assessments alongside the patient's educational attainment were key predictors for these models. Conclusions: Our approach suggests that routinely collected patient data are sufficient to drive a predictive model with a clinically acceptable level of accuracy (AUC>0.7) and is the first such tool to be externally validated. This level of accuracy is higher than previously published models utilising MRI data, which is not routinely collected.

2.
JMIR Form Res ; 6(9): e36130, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36099008

RESUMEN

BACKGROUND: Knee osteoarthritis (OA) is the most common form of OA and a leading cause of disability worldwide. Chronic pain and functional loss secondary to knee OA put patients at risk of developing depression, which can also impair their treatment response. However, no tools exist to assist clinicians in identifying patients at risk. Machine learning (ML) predictive models may offer a solution. We investigated whether ML models could predict the development of depression in patients with knee OA and examined which features are the most predictive. OBJECTIVE: The primary aim of this study was to develop and test an ML model to predict depression in patients with knee OA at 2 years and to validate the models using an external data set. The secondary aim was to identify the most important predictive features used by the ML algorithms. METHODS: Osteoarthritis Initiative Study (OAI) data were used for model development and external validation was performed using Multicenter Osteoarthritis Study (MOST) data. Forty-two features were selected, which denoted routinely collected demographic and clinical data such as patient demographics, past medical history, knee OA history, baseline examination findings, and patient-reported outcome measures. Six different ML classification models were trained (logistic regression, least absolute shrinkage and selection operator [LASSO], ridge regression, decision tree, random forest, and gradient boosting machine). The primary outcome was to predict depression at 2 years following study enrollment. The presence of depression was defined using the Center for Epidemiological Studies Depression Scale. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC) and F1 score. The most important features were extracted from the best-performing model on external validation. RESULTS: A total of 5947 patients were included in this study, with 2969 in the training set, 742 in the test set, and 2236 in the external validation set. For the test set, the AUC ranged from 0.673 (95% CI 0.604-0.742) to 0.869 (95% CI 0.824-0.913), with an F1 score of 0.435 to 0.490. On external validation, the AUC varied from 0.720 (95% CI 0.685-0.755) to 0.876 (95% CI 0.853-0.899), with an F1 score of 0.456 to 0.563. LASSO modeling offered the highest predictive performance. Blood pressure, baseline depression score, knee pain and stiffness, and quality of life were the most predictive features. CONCLUSIONS: To our knowledge, this is the first study to apply ML classification models to predict depression in patients with knee OA. Our study showed that ML models can deliver a clinically acceptable level of performance (AUC>0.7) in predicting the development of depression using routinely available demographic and clinical data. Further work is required to address the class imbalance in the training data and to evaluate the clinical utility of the models in facilitating early intervention and improved outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...